

QUICK BACKGROUNDQUICK BACKGROUND
Sierra’s Direct SQL Access feature allows us to:

Quickly and efficiently target and extract real-time
data from the Sierra ILS.
Organize data in logical and useful ways

QUICK BACKGROUND (CONT.)QUICK BACKGROUND (CONT.)
Why save / preserve data from Sierra?
1. Data transformations and integrations for specific

use cases

For example, adding geocoding information to
patron address data:

wikipedia.org/wiki/Data_transformation
wikipedia.org/wiki/Data_integration

wikipedia.org/wiki/Geocoding

https://en.wikipedia.org/wiki/Data_transformation
https://en.wikipedia.org/wiki/Data_integration
https://en.wikipedia.org/wiki/Geocoding

QUICK BACKGROUND (CONT.)QUICK BACKGROUND (CONT.)
Why save / preserve data from Sierra? (cont.)
2. Cache Sierra data:

For use in an application instead of running an
“expensive query” to deliver content
For use in an application where holding onto
data which may otherwise be destroyed or
transformed by the Sierra application itself

UNDERSTANDING SIERRA’SUNDERSTANDING SIERRA’S
DATABASE VIEWS AND DATADATABASE VIEWS AND DATA

Some data in Sierra stays more static
(think of a “receipt”, or log of transactions)

circ_trans

Each row of circ_trans contains information about a circulation transaction.

Column Data Type Not NULL? Comment

id int false System-generated sequential ID.

transaction_gmt timestamptz false Transaction date in UNIX format.

application_name varchar false The name of the program that
generated the transaction. Valid
program names are:

circ (includes transactions
made using PC Circ)
circa (for transactions
written by
selfcheckwebserver and in-
house use [transaction
codes 'u' and 's'], which
use webpac to execute
transactions.)
milcirc
milmyselfcheck
readreq
selfcheck

source_code varchar false The transaction source. Possible
values are:

local
INN-Reach
ILL

op_code varchar false Type of transaction:

o = i = checkin

UNDERSTANDING SIERRA’S DATABASE VIEWS ANDUNDERSTANDING SIERRA’S DATABASE VIEWS AND
DATA (CONT.)DATA (CONT.)

Circulation transactions are created in the database
table and remain static
Rows are deleted from the table a�er a certain
period of time (2 weeks is the default, but this can be
extended by iii upon request)

-- get some info about our circ_trans dates

SELECT

NOW()::TIMESTAMP WITH TIME ZONE as now_gmt,

MAX(c.transaction_gmt)::TIMESTAMP WITH TIME ZONE AS max,

MIN(c.transaction_gmt)::TIMESTAMP WITH TIME ZONE AS min,

AGE(MIN(c.transaction_gmt)) AS earliest_transaction_age

FROM

sierra_view.circ_trans as c

UNDERSTANDING SIERRA’S DATABASE VIEWS ANDUNDERSTANDING SIERRA’S DATABASE VIEWS AND
DATA (CONT.)DATA (CONT.)

Other data is more variable or is a direct
representation that describes a particular state of a
record or process in the ILS.

hold

Each row of hold describes a bibliographic, item, or volume hold.

Column Data Type Not NULL? Comment

id bigint false System-generated
sequential ID.

patron_record_id bigint false Foreign key to
patron_record.

record_id bigint false Foreign key to record.

placed_gmt timestamp false Date the hold was placed.

is_frozen boolean false Specifies whether the hold is
frozen (suspended).

delay_days int false Stores the "not wanted
before" date as a number of
days after the date the hold
was placed. The maximum
value is "180". If a "not
wanted before" date was not
specified, the value is '0'.

location_code varchar false For bib or volume-level
holds, the branch location
from which to fill the hold, if
the hold is set for 'Limit to
Location'. Does not apply to
item-level holds (blank).

expires_gmt timestamp false "Not needed after" date.

status char false Hold status.

UNDERSTANDING SIERRA’S DATABASE VIEWS ANDUNDERSTANDING SIERRA’S DATABASE VIEWS AND
DATA (CONT.)DATA (CONT.)

The state of the hold is defined in the Sierra
database
Data changes depending on the state or status of
the hold, and is then removed from the database
when the hold is deleted, filled or expires

-- this will select Ray Voelker's hold information from the

-- Sierra SQL database

SELECT

h.id,

h.patron_record_id,

h.record_id,

h.status,

h.pickup_location_code

FROM

sierra_view.hold as h

WHERE

h.patron_record_id = 481038535591;

HOW TO CACHE / TRANSFORM /HOW TO CACHE / TRANSFORM /
PRESERVE DATA FROM SIERRA?PRESERVE DATA FROM SIERRA?

No shortage of options!
pgAdmin is a popular choice for a desktop client

"Execute query, write result to file"
Creates a .csv file from the results

www.pgadmin.org

https://www.pgadmin.org/

HOW TO CACHE / TRANSFORM / PRESERVE DATAHOW TO CACHE / TRANSFORM / PRESERVE DATA
FROM SIERRA? (CONT.)FROM SIERRA? (CONT.)

Many programming languages provide access to
PostgreSQL via their libraries:

php-pgsql: PHP PostgreSQL driver

psycopg2: Python PostgreSQL adapter
www.php.net/manual/en/book.pgsql.php

initd.org/psycopg/docs/

https://www.php.net/manual/en/book.pgsql.php
http://initd.org/psycopg/docs/

HOW TO CACHE / TRANSFORM / PRESERVE DATAHOW TO CACHE / TRANSFORM / PRESERVE DATA
FROM SIERRA? (CONT.)FROM SIERRA? (CONT.)

My method consists of the following overview:
1. Use Python to connect to Sierra’s database
2. Issue SQL statement on Sierra's database to

target and compile the data for extraction

HOW TO CACHE / TRANSFORM / PRESERVE DATAHOW TO CACHE / TRANSFORM / PRESERVE DATA
FROM SIERRA? (CONT.)FROM SIERRA? (CONT.)

My method consists of the following overview
(cont.):
3. Export result data to either a .csv file, and/or

directly into a SQLite database
.csv files are easy to later load into an SQLite
database, spreadsheet, or other data
warehouse tool

HOW TO CACHE / TRANSFORM / PRESERVE DATAHOW TO CACHE / TRANSFORM / PRESERVE DATA
FROM SIERRA? (CONT.)FROM SIERRA? (CONT.)

SQLite Database:

"SQLite is a C-language library that implements a small,
fast, self-contained, high-reliability, full-featured, SQL

database engine."

sqlite.org

https://sqlite.org/index.html

HOW TO CACHE / TRANSFORM / PRESERVE DATAHOW TO CACHE / TRANSFORM / PRESERVE DATA
FROM SIERRA? (CONT.)FROM SIERRA? (CONT.)

SQLite Database (cont.)

SQLite database engine is a great tool for caching
data:
1. Stores and organizes large amounts of data

quickly and efficiently
2. You don’t have to set up and maintain a server

(data is portable; entire database is contained in a
single, cross-platform file)

HOW TO CACHE / TRANSFORM / PRESERVE DATAHOW TO CACHE / TRANSFORM / PRESERVE DATA
FROM SIERRA? (CONT.)FROM SIERRA? (CONT.)

SQLite Database (cont.)

3. Ability and flexibility to build SQL queries and
applications that directly use the data that you’ve
collected

4. Has a useful desktop tool:
5. It’s included in the Python Standard Library!

sqlitebrowser.org

https://sqlitebrowser.org/

Python sample code to create database,

create a table, and then insert some data

note: sqlite3 is part of the Python Standard Library

import sqlite3

create the database

conn = sqlite3.connect('example.db')

cursor = conn.cursor()

create the table

cursor.execute("""CREATE TABLE IF NOT EXISTS `data`

 (`id` INTEGER PRIMARY KEY AUTOINCREMENT,

 `input` TEXT)""")

insert some data

cursor.execute("""INSERT INTO data (`input`)

 VALUES ('sample text')""")

commit and close the connection

conn.commit()

conn.close()

EXAMPLES:EXAMPLES:
1. Collection Analysis / Circulation Data Analysis

intended for use with the CollectionHQ service,
but can be adapted for local use

2. Patron Savings Calculator
intended to display information on the Encore
patron account information page about how
much money has been "saved" by using the
library

EXAMPLES: (CONT.)EXAMPLES: (CONT.)

3. Hold Shelf Delivery Matrix Report
intended to produce a spreadsheet report of
items for hold shelf locations (ready for patron
pickup) and from where they originated

4. Mapping Geo Data from Patron Address Data and
Circulation Transaction Data

intended to take geocoded patron address data
and produce a visualization by plotting it on a
map

EXAMPLE 1EXAMPLE 1
COLLECTION ANALYSIS / CIRCULATIONCOLLECTION ANALYSIS / CIRCULATION

DATA ANALYSISDATA ANALYSIS

This application was built for the purpose of
automatically preserving and sending data from the
Sierra database to the CollectionHQ service via FTP

github.com/plch/collection-analysis

https://github.com/plch/collection-analysis

COLLECTION ANALYSIS / CIRCULATION DATACOLLECTION ANALYSIS / CIRCULATION DATA
ANALYSIS (CONT.)ANALYSIS (CONT.)

Three main groups of data are targeted for export:
1. Bibliographic Record Data:

Fields exported include: bib record number,
control numbers (var fields tagged 'o'), isbn, call
numbers, and a few other metadata fields related
to the bib record

temp_table-bib_data.sql

https://github.com/plch/collection-analysis/blob/master/temp_table-bib_data.sql

COLLECTION ANALYSIS / CIRCULATION DATACOLLECTION ANALYSIS / CIRCULATION DATA
ANALYSIS (CONT.)ANALYSIS (CONT.)

Three main groups of data are targeted for export:
(cont.)
2. Item Record Data:

Fields exported include: item record number, bib
record number, circulation information, price, and
a few other metadata fields related to the item
record

temp_table-item_data.sql

https://github.com/plch/collection-analysis/blob/master/temp_table-item_data.sql

COLLECTION ANALYSIS / CIRCULATION DATACOLLECTION ANALYSIS / CIRCULATION DATA
ANALYSIS (CONT.)ANALYSIS (CONT.)

Three main groups of data are targeted for export:
(cont.)
3. Hold Data:

Weekly snapshot of bib-level holds. It is organized
by title (bib record number), and then each title
has a list of holds with related metadata for each
hold (patron number, pickup location, created
date, expiration date, etc)

temp_table-hold_data.sql

https://github.com/plch/collection-analysis/blob/master/temp_table-hold_data.sql

COLLECTION ANALYSIS / CIRCULATION DATACOLLECTION ANALYSIS / CIRCULATION DATA
ANALYSIS (CONT.)ANALYSIS (CONT.)

Overview of the process:
1. Create and open .csv files to hold data output

and/or open local database (if it’s useful to place
data into local SQLite database)

2. Connect to remote Sierra database, and create
the temporary tables that will be used for
exporting

COLLECTION ANALYSIS / CIRCULATION DATACOLLECTION ANALYSIS / CIRCULATION DATA
ANALYSIS (CONT.)ANALYSIS (CONT.)

Overview of the process (cont.):
3. Generate data output from the Sierra database

temporary tables, and write the output to a .csv
file and/or to a local SQLite database

4. Send data via FTP
 can be found in the

 for this project
full export script public github
repository

https://github.com/plch/collection-analysis/blob/master/update.py
https://github.com/plch/collection-analysis/

EXAMPLE 2EXAMPLE 2
PATRON SAVINGS CALCULATORPATRON SAVINGS CALCULATOR

This application was designed to work with the iii
discovery layer Encore's account detail page, to
display how much a patron has "saved" by
borrowing from the library

github.com/plch/patron-savings-calculator

https://github.com/plch/patron-savings-calculator

PATRON SAVINGS CALCULATOR (CONT.)PATRON SAVINGS CALCULATOR (CONT.)

Cached “savings” information is based on the
patron record number and can be output in multiple
formats (based on this application's custom URL
endpoints):

JSON
 /api/v1/patron_savings/2198439

{

 "count_titles": 118,

 "min_date_epoch": 1534957500,

 "patron_record_num": 2198439,

 "total_savings": 2109.2799999999997

}

https://ilsweb.cincinnatilibrary.org/api/v1/patron_savings/2198439

PATRON SAVINGS CALCULATOR (CONT.)PATRON SAVINGS CALCULATOR (CONT.)

Cached “savings” information is based on the
patron record number and can be output in multiple
formats (based on this application's custom URL
endpoints):

PNG
 /api/v1/patron_savings/img/2198439

https://ilsweb.cincinnatilibrary.org/api/v1/patron_savings/img/2198439

PATRON SAVINGS CALCULATOR (CONT.)PATRON SAVINGS CALCULATOR (CONT.)

Cached “savings” information is based on the
patron record number and can be output in multiple
formats (based on this application's custom URL
endpoints):

PNG
 /api/v1/patron_savings/img/2198439

https://ilsweb.cincinnatilibrary.org/api/v1/patron_savings/img/2198439

PATRON SAVINGS CALCULATOR (CONT.)PATRON SAVINGS CALCULATOR (CONT.)

About this very simple RESTful API
Written as a Python / Flask application:

github.com/plch/patron-savings-
calculator/blob/master/app.py
www.palletsprojects.com/p/flask

https://github.com/plch/patron-savings-calculator/blob/master/app.py
https://www.palletsprojects.com/p/flask/

PATRON SAVINGS CALCULATOR (CONT.)PATRON SAVINGS CALCULATOR (CONT.)

About this very simple RESTful API (cont)
Hosted on an Apache Web Server via the WSGI
module
A good tutorial on how this can be set up can be
found here:
www.digitalocean.com/community/tutorials/how-
to-deploy-a-flask-application-on-an-ubuntu-vps

https://www.digitalocean.com/community/tutorials/how-to-deploy-a-flask-application-on-an-ubuntu-vps

PATRON SAVINGS CALCULATOR (CONT.)PATRON SAVINGS CALCULATOR (CONT.)

About this very simple RESTful API (cont)
Draws data from the SQLite database that has
been caching relevant data
SQLite database, `patron_savings.db` is updated
frequently (every 5 minutes) via a Python update
script:
github.com/plch/patron-savings-
calculator/blob/master/update.py

https://github.com/plch/patron-savings-calculator/blob/master/update.py

PATRON SAVINGS CALCULATOR (CONT.)PATRON SAVINGS CALCULATOR (CONT.)

About the `update.py` script :
Script starts by looking at the last entry it received
from the Sierra database
A query is constructed to extract relevant data
from the Sierra database that is more recent than
that last entry in the local database
The local database is updated with the fresh data
from the Sierra database

PATRON SAVINGS CALCULATOR (CONT.)PATRON SAVINGS CALCULATOR (CONT.)

A note about privacy / protection / obfuscation of
this data:

No title information is saved in the local database,
other than a hashed bib record id
Hashed bib record id is stored to avoid duplicating
the price information when a title is checked out
multiple times, and to differentiate titles from one
another in the local database

PATRON SAVINGS CALCULATOR (CONT.)PATRON SAVINGS CALCULATOR (CONT.)

A note about obfuscation with this data (cont.):
No patron information, other than the patron
record number, is stored in the local database
Only price and number of titles checked out are
surfaced via the RESTful API

EXAMPLE 3EXAMPLE 3
HOLD SHELF DELIVERY MATRIX REPORTHOLD SHELF DELIVERY MATRIX REPORT

The purpose of this application is to create a
spreadsheet that displays items delivered to a hold
shelf location, and from what location they came

github.com/plch/plch-holds-shelf

https://github.com/plch/plch-holds-shelf

HOLD SHELF DELIVERY MATRIX REPORT (CONT.)HOLD SHELF DELIVERY MATRIX REPORT (CONT.)

HOLD SHELF DELIVERY MATRIX REPORT (CONT.)HOLD SHELF DELIVERY MATRIX REPORT (CONT.)

SELECT FROM `sierra_view.hold` WHERE `status` =

code definition

"b" Bib hold ready for pickup

"j" Volume hold ready for pickup

"i" Item hold ready for pickup

HOLD SHELF DELIVERY MATRIX REPORT (CONT.)HOLD SHELF DELIVERY MATRIX REPORT (CONT.)

Source location:
`checkin_statistics_group_code_num`
found in `sierra_view.item_record` table view

HOLD SHELF DELIVERY MATRIX REPORT (CONT.)HOLD SHELF DELIVERY MATRIX REPORT (CONT.)

Destination location:
`pickup_location_code`
found in `sierra_view.hold`

HOLD SHELF DELIVERY MATRIX REPORT (CONT.)HOLD SHELF DELIVERY MATRIX REPORT (CONT.)

Note: the source value of `location_code` comes
from
`sierra_view.statistic_group_myuser`
using `checkin_statistics_group_code_num`
effectively giving us the pickup location from the
stat group code num

HOLD SHELF DELIVERY MATRIX REPORT (CONT.)HOLD SHELF DELIVERY MATRIX REPORT (CONT.)

Do not insert duplicate rows of hold data...
We could build a complicated set of comparisons
of the remotely selected data to our local data ...
Or, we could let the databases do all the work!
Create a hash of the entire hold row, use that
value as the unique primary key in the local
database table

HOLD SHELF DELIVERY MATRIX REPORT (CONT.)HOLD SHELF DELIVERY MATRIX REPORT (CONT.)

Local SQLite table creation (simplified)
-- local SQLite table creation (simplified) ...

CREATE TABLE IF NOT EXISTS "data" (

 `hash_row` TEXT UNIQUE PRIMARY KEY

 -- more columns created below ...

);

HOLD SHELF DELIVERY MATRIX REPORT (CONT.)HOLD SHELF DELIVERY MATRIX REPORT (CONT.)

Remote Sierra database query (simplified)
-- remote Sierra database query (simplified) ...

SELECT

MD5(CAST((h.*) AS TEXT)) AS hash_row

-- more columns of data selected below

FROM

sierra_view.hold AS h

WHERE

h.status IN(

 'b', 'j', 'i'

);

HOLD SHELF DELIVERY MATRIX REPORT (CONT.)HOLD SHELF DELIVERY MATRIX REPORT (CONT.)

Remote Sierra database query (simplified) output:

HOLD SHELF DELIVERY MATRIX REPORT (CONT.)HOLD SHELF DELIVERY MATRIX REPORT (CONT.)

Local SQLite table inserting the retrieved data
(simplified):

INSERT OR IGNORE INTO data (

 hash_row

)

VALUES ('59752190f26bda0ec17167010cc6619f'),

 ('59752190f26bda0ec17167010cc6619f'),

 ('ce971535718d416fd09e9266797c9374');

SELECT * FROM DATA;

HOLD SHELF DELIVERY MATRIX REPORT (CONT.)HOLD SHELF DELIVERY MATRIX REPORT (CONT.)

Local SQLite table inserting the retrieved data
(simplified):

INSERT OR IGNORE INTO data (

 hash_row

)

VALUES ('59752190f26bda0ec17167010cc6619f'),

 ('59752190f26bda0ec17167010cc6619f'),

 ('ce971535718d416fd09e9266797c9374');

SELECT * FROM DATA;

HOLD SHELF DELIVERY MATRIX REPORT (CONT.)HOLD SHELF DELIVERY MATRIX REPORT (CONT.)

Overview of the process: (this should look familiar)
1. Connect to our local database, and create table if

it doesn’t exist. Also, establish connection to the
remote Sierra database

2. Query the Sierra ‘hold’ table for rows that have
status of ‘i’, ‘j’, or ‘b’; this indicates that there is a
item hold, volume hold, or bib hold ready for
pickup

HOLD SHELF DELIVERY MATRIX REPORT (CONT.)HOLD SHELF DELIVERY MATRIX REPORT (CONT.)

Overview of the process: (cont.)
3. Insert retrieved rows (or ignore duplicate rows as

explained previously) to the local SQLite
database, then close all connections

4. Set the update of local data to happen frequently
(every 5 minutes via CRON is a good method for
doing this)

HOLD SHELF DELIVERY MATRIX REPORT (CONT.)HOLD SHELF DELIVERY MATRIX REPORT (CONT.)

Exporting / Producing the report
1. Query the local SQLite database, then export the

results to a .csv file:

github.com/plch/plch-holds-
shelf/blob/master/export_csv.sh
github.com/plch/plch-holds-
shelf/blob/master/export.sql

https://github.com/plch/plch-holds-shelf/blob/master/export_csv.sh
https://github.com/plch/plch-holds-shelf/blob/master/export.sql

HOLD SHELF DELIVERY MATRIX REPORT (CONT.)HOLD SHELF DELIVERY MATRIX REPORT (CONT.)

Exporting / Producing the report (cont.)
2. Import the .csv file into LibreOffice Calc (or Excel)

and perform a pivot on the data:

Exporting / Producing the report (cont.)

HOLD SHELF DELIVERY MATRIX REPORT (CONT.)HOLD SHELF DELIVERY MATRIX REPORT (CONT.)

Exporting / Producing the report (cont.)

Exporting / Producing the report (cont.)

2019-04-15_hold_shelf_matrix.xlsx

http://0.0.0.0:8000/img/2019-04-15_hold_shelf_matrix.xlsx

EXAMPLE 4EXAMPLE 4
MAPPING GEO DATA FROM PATRONMAPPING GEO DATA FROM PATRON
ADDRESS DATA AND CIRCULATIONADDRESS DATA AND CIRCULATION

TRANSACTION DATATRANSACTION DATA
The purpose of this process is to plot patron
locations and branch locations on a map based on
latitude / longitude coordinates derived from
mailing address data
This is a work in progress!

MAPPING GEO DATA (CONT.)MAPPING GEO DATA (CONT.)

Cached data is contained in an SQLite database
Circulation data
(weekly export of `sierra_view.circ_trans`
table view)
Patron data
(weekly export of relevant patron information
from multiple table views)

MAPPING GEO DATA (CONT.)MAPPING GEO DATA (CONT.)

Geocoding Patron Street Addresses:
Patron address data (patron_record_id, street
number, street name, city, zip) are exported to a
.csv file

MAPPING GEO DATA (CONT.)MAPPING GEO DATA (CONT.)

Possible Geocoding Services:
Census.gov

Google

SmartyStreets

www.census.gov/data/developers/data-sets/Geoco
services.html

developers.google.com/maps/documentation/java

smartystreets.com/products/list

https://www.census.gov/data/developers/data-sets/Geocoding-services.html
https://developers.google.com/maps/documentation/javascript/geocoding
https://smartystreets.com/products/list

MAPPING GEO DATA (CONT.)MAPPING GEO DATA (CONT.)

SmartyStreets has some very user-friendly services
for bulk upload / download of address data for
verification and geocoding
SmartyStreets may be able to offer a discounted /
free service to libraries that allow for bulk
verification / geocoding as well as on-the-fly
verification and auto-corrected address inputs for
things such as web input forms

MAPPING GEO DATA (CONT.)MAPPING GEO DATA (CONT.)

SmartyStreets list service returns .csv data back
with relevant address information, identified by the
unique ID (`patron_record_id`) that was provided
We may easily load this into the local SQLite
database with the import csv feature (from the GUI)

MAPPING GEO DATA (CONT.)MAPPING GEO DATA (CONT.)

There are very good data analysis / visualization
tools available for Python:

PyViz

A Conda metapackage "pyviz"
Makes data visualization in Python easier to use

pyviz.org

https://pyviz.org/

jupyter_notebook_example.pdf

http://0.0.0.0:8000/img/jupyter_notebook_example.pdf

